

Lines for Conveying Shape
Beñat Morisset de Pérdigo

of December 2020, DigiPen Institute of Technology, Bilbao15th

CS562 Final project Report 2020/12/15

Beñat Morisset de Pérdigo DigiPen Institute of Technology, Bilbao

0. Table of Contents
0. Table of Contents 2

1. Introduction 3

2. Goal 3

3. Conventions 4

4. Theory 4

4.1 Principal Contour 5

4.2 Suggestive Contour 6

4.3 Principal Highlight 7

4.3.1 Finding the Axis of Maximum Curvature in Image-space 8

4.4 Suggestive Highlight 9

5. Implementation 10

5.1 Principal Contour 11

5.1.1 Naive Approach 11

5.1.2 Sobel Filter of Z-Coordinate in Camera Space 13

5.2 Suggestive Contour 15

5.3 Principal Highlight 17

5.4 Suggestive Highlight 18

6. Results 19

6.1 Style 21

6.2 Performance 22

6.2.1 Square Neighborhood Dimensions 23

6.2.2 Renderbuffer Resolution 23

6.2.3 Screen Coverage 24

7. Possible Improvements 25

7.1 Appeal 25

7.2 Performance 26

8. Conclusion 27

9. How to Use the Demo 27

10. Bonus Images 31

11. References 35

2/35

CS562 Final project Report 2020/12/15

Beñat Morisset de Pérdigo DigiPen Institute of Technology, Bilbao

1. Introduction
This document compiles the theory and implementation details of my final project for the

course CS 562: Advanced Graphics that I have attended at Digipen Institute of Technology

Europe - Bilbao during the semester of fall 2020. The implementation has been done in my

real-time graphics framework for the course which also contains all the assignments and some

bonus effects in other scenes.

2. Goal
My goal in this final project was to implement a non-photorealistic rendering technique in

order to effectively convey 3D shapes using lines in a similar way an artist may do it. I tried to

replicate the styles of Roy Lichteinstein’s golf ball as well as Frank Miller’s style.

 ​ ​Roy Lichtenstein, “Golf Ball”, 1962 Sin City - Marv by Frank Miller

 © Estate of Roy Lichtenstein

3/35

CS562 Final project Report 2020/12/15

Beñat Morisset de Pérdigo DigiPen Institute of Technology, Bilbao

3. Conventions
For this document I consider the following conventions:

- The view vector to be the unit vector that goes from the point in the surface to thev

camera

- The surface normal to be the unit vector representing the surface normal pointingn

outwards of the object

4. Theory
The whole project is based on the following papers:

- Suggestive contours for conveying shape

- Highlight lines for conveying shape

Those papers are closely related, and define a set of lines useful to convey 3D shape in a similar

way an artist may do it. The lines defined in those papers are the following:

- Principal Contour

- Suggestive Contour

- Principal Highlight

- Suggestive Highlight

My purpose in this section is not to supplant the papers I based my project upon. I will give an

informal summarized explanation of the core concepts that were needed to implement this

effect.

4/35

CS562 Final project Report 2020/12/15

Beñat Morisset de Pérdigo DigiPen Institute of Technology, Bilbao

4.1 Principal Contour

The principal contour is a line that separates a front facing surface with a back facing surface

(with respect to the viewer). It outlines the whole object and also marks the limits of self

occluding features. On the image below you can see how the outline and the occluding armrest

have principal contours.

This image made in paint.net represents schematically

where the principal contour should be drawn

The paper suggests to draw principal contours on areas where the surface normal isn

perpendicular to the view direction . is perpendicular to when .v n v 0 n · v =

This image made in paint.net shows that contours

are drawn on places where is perpendicular to n v

5/35

CS562 Final project Report 2020/12/15

Beñat Morisset de Pérdigo DigiPen Institute of Technology, Bilbao

4.2 Suggestive Contour

Suggestive contours are lines that give the illusion of indentations or concavities on a surface.

Of course, if an indentation is deep enough, its ridge will occlude the deepest of it, and so a

principal contour should be drawn instead. Therefore, a suggestive contour can be seen as an

anticipation of a principal contour. The paper suggests to draw suggestive contours on local

minima of .n · v

A representation of the local minimum of n · v In this image taken from my framework we can

 see how the suggestive contours convey the

concavities on the golf ball

6/35

CS562 Final project Report 2020/12/15

Beñat Morisset de Pérdigo DigiPen Institute of Technology, Bilbao

4.3 Principal Highlight

Principal Highlights delineate surfaces that are directly facing the viewer. Therefore, they are

on areas where is parallel to , or . Another condition should be met to ensure then v n · v = 1

shape is a line: the projected view vector onto the surface’s tangent plane must be parallel tow

the axis of minimum curvature of the surface . As is always perpendicular to it ise2 e1 e2

equivalent to check that is perpendicular to .w e1

Represents a point where n is parallel to v This drawing represents how relates to , w v

 and and relate to the surfacee1 e2

but to get the paper only details an object space implementation. So I came upw = v − (n·v) n
v − (n·v) n| | e1

with my own method to compute it in image space.

7/35

CS562 Final project Report 2020/12/15

Beñat Morisset de Pérdigo DigiPen Institute of Technology, Bilbao

4.3.1 Finding the Axis of Maximum Curvature in Image-space

In 2D the curvature can be extracted from a pair of positions and a pair of normals. This also

works in 3D if both points and both normals are contained in a normal plane.

The idea is to compute the curvature for each point in the neighborhood using the center-point

and the center surface normal as the other pair, and find the maximum. The neighbor normal

should be projected onto the center point’s normal plane that goes through the neighbor point.

Then the maximum axis of curvature is the direction from the center-point to the maximum

curvature point, projected onto the tangent plane of the center point.

Let us go through the derivation of the formula to get the curvature from two positionsC

 and two normals , all contained in a normal plane:, p p1 2 , n n1 2

Two drawings made on paint.net representing the relationship between the radius of curvature

and the two pairs of point and normal in the normal plane.

As you can see in the drawings below, with a bit of trigonometry we find that we can compute

the radius of curvature as or , and , R R = d
2·sin(Θ) R = d

2·cos(90º − α) Θ = 2
arccos(n ·n)1 2 0º Θ α = 9 −

Finally . 1/R C =

This last step can be skipped as we do not care for the exact value of the curvature, we just need

to find its local maxima. For that it suffices to find the local minima of as is inverselyR C

proportional to .R

8/35

CS562 Final project Report 2020/12/15

Beñat Morisset de Pérdigo DigiPen Institute of Technology, Bilbao

The projection of the neighbor normal into the normal plane of the center point going through

the neighbor point is:

 with wherem = n − (n ·v)·vn n
|n − (n ·v)·v|n n

 p p) v = nc × (n − c

- , are the positions of the center and the neighbor respectivelyp c pn

- , are the normals of the center and the neighbor respectivelyn c nn

- is the resulting projection of m nn

4.4 Suggestive Highlight

Suggestive highlights are lines that give the illusion of bumps or bulges on a surface. Of course,

if a smooth bump is high enough, it will have a part that is directly facing the viewer, so a

principal highlight should be drawn instead. Therefore, a suggestive highlight can be seen as an

anticipation of a principal highlight.

The paper suggests to draw suggestive contours on local minima of .n · v

A representation of the local maximum of n · v In this image taken from my framework we can

 see how the suggestive highlight convey the

convexities on the sofa

9/35

CS562 Final project Report 2020/12/15

Beñat Morisset de Pérdigo DigiPen Institute of Technology, Bilbao

5. Implementation
The framework uses OpenGL API and the following libraries: GLFW, glad, glm, stb_image,

assimp, JsonCpp and Dear ImGui. The rendering is done with the deferred shading technique.

The whole effect is done in a single fragment shader that uses the normal and depth buffers of

the g-buffer. To be able to showcase the effect better, I gave the shader many different options

and tweakable variables, but when used for a practical application, it is better to strip the effect

of all unneeded options to gain performance. Especially the options that let you choose between

different algorithms like whether or not to use a circular neighborhood for the suggestive lines,

or which principal contour method to use.

To avoid problems the first step in the shader is to discard all clear color pixels.

10/35

CS562 Final project Report 2020/12/15

Beñat Morisset de Pérdigo DigiPen Institute of Technology, Bilbao

5.1 Principal Contour

5.1.1 Naive Approach

The first approach I implemented follows closely what the papers suggests. It tints pixels that

have a surface normal close to perpendicular to the view direction .n v

I considered a to be perpendicular to when the dot product between those two unit vectorsn v

is smaller than a tweakable value. If using face normals, the result of the dot product cannot be

negative as the gbuffer does not contain back faces. If using normal maps, can be belown · v

zero, so we have to clamp the result to zero. This way we only get results between zero and the

tweakable value.

To make the lines fade smoothly I added a fade margin in which the color is interpolated

between the principal contour color and the base color. This is not needed when suggestive

contours are present as they will naturally extend the principal contour.

This implementation gives the following artifacts:

- Flat surfaces that have almost perpendicular will be colored entirely as a contour.n v

The tinted area is no longer a line and is, therefore, out of place in this effect.

- On surfaces that abruptly change from frontface to backface, so that no close ton

perpendicular to is captured in the g-buffer will not be tinted. This gives imagesv

where the principal contour is absent of many places where it should be present.

11/35

CS562 Final project Report 2020/12/15

Beñat Morisset de Pérdigo DigiPen Institute of Technology, Bilbao

Image from my framework with only principal contours enabled. The principal contours are detected using the

method explained above. The two artifact types are visible. On the left armrest panel we can see the almost

perpendicular flat surface artifact. On the right armrest we can see the missing contour due to the abrupt change

from frontface to backface artifact.

12/35

CS562 Final project Report 2020/12/15

Beñat Morisset de Pérdigo DigiPen Institute of Technology, Bilbao

5.1.2 Sobel Filter of Z-Coordinate in Camera Space

This approach is farther from the papers’ than the previous one as it does not take into

consideration the surface normal nor the view direction .n v

This implementation comes from the hypothesis that principal contours are places where the

camera-space z-coordinate changes abruptly. In fact, in such a place will be close toz n

perpendicular to . So, I will consider part of a principal contour any pixel that has av

camera-space z-coordinate gradient bigger than a tweakable value. The catch is that someG

places where the normal is close to perpendicular may not have a sufficiently abrupt change in

the camera-space z-coordinate to be tinted. I did not find this to be critical for this effect.

To compute the of a pixel I compute the of all the pixels in a 3x3 neighborhood from theirG z

depth and applying the Sobel operation to those.d

To get from , I used the following formula: where is the element atz d z =
q

4,3
q · (2·d − 1) + q3,4 4,4

qi,j

row and column of the inverse of the projection matrix.i j

This equation is derived from the formula to get the camera-space position from the depth value

 and the texture coordinates and : with andd u v os p cam−space = 1
pw

· p P osp = −1 · p clip−space

.osp clip−space = 2 · u , v , d(− 2
1 − 2

1 − 2
1)T

13/35

CS562 Final project Report 2020/12/15

Beñat Morisset de Pérdigo DigiPen Institute of Technology, Bilbao

Image from my framework with only principal contours enabled. The principal contours are detected using the

method explained above. The artifact is visible on the left armrest as the inner contour line does not outline the

front part of the armrest as there the z-coordinate gradient is not big enough.

14/35

CS562 Final project Report 2020/12/15

Beñat Morisset de Pérdigo DigiPen Institute of Technology, Bilbao

5.2 Suggestive Contour

To draw suggestive contours I mostly followed the algorithm described in the papers.

The suggestive contour should be drawn on local minima of . As a value of 0 will be a localn · v

(co-)minimum, this method also detects principal contours. Therefore I draw the principal

contour after the suggestive contour to ensure the principal contour is drawn with the correct

color.

To find those local minima of I compute on a NxN pixel neighborhood, where N is an · v n · v

tweakable integer. A simple version would be to consider a center pixel a local minimum if it

has the smallest value in the neighborhood.

This simple version has two problems:

- Mostly flat surfaces will also get suggestive contours as this minimum does not consider

by how much is the pixel minimum

- Suggestive contours will be dotted lines as if a pixel is a local minima in a NxN

neighborhood it means that the next N pixels in a direction cannot be a minima.

To solve this artifacts the paper suggests that to introduce two tweakable values:

- A minimum of difference between the center pixel and the maximum in the

neighborhood. This way mostly flat surfaces will not get suggestive contours if we do not

wish to.

- An acceptable proportion of pixels that can have a smaller value than the center one, and

still consider the center a minimum. This way we can tweak the value until the lines are

nice and continuous.

I also discard neighbors that are too far away in terms of the Z-coordinate in camera space to

avoid counting pixels from non-neighboring surfaces as neighbors.

15/35

CS562 Final project Report 2020/12/15

Beñat Morisset de Pérdigo DigiPen Institute of Technology, Bilbao

All three images show renders of suggestive contours in my framework. The left image lacks the minimum

difference check. The center image lacks the acceptance of a small proportion of smaller values. The right image

has both tweakable values.

Instead of a NxN square neighborhood the paper suggests to use a circular neighborhood of

radius N. I implemented that version as well, just discarding pixels that are further than N away

from the center pixel, and found out that it does not seem to improve on the effect.

Both images are taken from my framework. Left uses a square neighborhood to find the local minima of , the n · v

right image uses a circular neighborhood.

16/35

CS562 Final project Report 2020/12/15

Beñat Morisset de Pérdigo DigiPen Institute of Technology, Bilbao

5.3 Principal Highlight

The paper suggests to consider as a principal highlight places that pass two conditions:

- Surface normal almost parallel to the view direction n v

- Axis of smallest curvature is almost parallel to the projected view direction e2 w

For the first condition it suffices to check that is bigger than a tweakable value. This isn · v

analogous to the naive implementation of the principal contour.

For the second condition, because the axis of maximum curvature is perpendicular to , it ise1 e2

enough to check that is smaller than a tweakable value.||e1 · w

 and to get I proceeded as explained in the section ​4.3​, taking a squarew = v − (n·v) n
v − (n·v) n| | e1

neighborhood NxN.

I found that the final projection into the tangent plane can be omitted and the result still looks

almost the same.

This is an image taken from my framework of the principal highlights of a sofa.

It uses a 17x17 square neighborhood to find the axis of maximum curvature.

17/35

CS562 Final project Report 2020/12/15

Beñat Morisset de Pérdigo DigiPen Institute of Technology, Bilbao

5.4 Suggestive Highlight

To draw suggestive highlights I mostly followed the algorithm described in the papers, which is

the same as suggestive contours, but finding local maxima of instead of local minima. n · v

 = 1 will be a local maximum, so this method also detects principal highlights. Therefore In · v

draw the principal highlights after the suggestive highlights to ensure the principal highlights

are drawn with the correct color.

To find those local maxima of I compute on a NxN pixel neighborhood, where N is an · v n · v

tweakable integer.

The same artifacts as for suggestive contours would appear with the naive implementation so

we add the same tweakable values to correct them:

- A minimum of difference between the center pixel and the maximum in the

neighborhood. This way mostly flat surfaces will not get colored if we do not wish to.

- An acceptable proportion of pixels that have a bigger value than the center one, and still

consider the center a maximum. This way we can tweak the value until the lines are nice

and continuous.

This is an image taken from my framework of the suggestive highlights

of a sofa. It uses a 9x9 square neighborhood to find the local maximum.

18/35

CS562 Final project Report 2020/12/15

Beñat Morisset de Pérdigo DigiPen Institute of Technology, Bilbao

6. Results
As you can see in the images below I achieved an effect that is similar to the one done by the

papers’ authors. As expected the papers’s object-scpace algorithm gives smoother lines and

therefore a more appealing result.

 Left image of figure 1 of the paper “Highlight Lines Image taken from my framework. It lacks

 for Conveying Shape”. It has been done in object-space. the subtle toon shading the paper’s has

 ​Image-space render of figure 12 of the paper Image taken from my framework.

 “Highlight Lines for Conveying Shape”

19/35

CS562 Final project Report 2020/12/15

Beñat Morisset de Pérdigo DigiPen Institute of Technology, Bilbao

I noticed the effect deteriorates when decreasing the vertex count.

 Image taken from my framework Image taken from my framework

 of the sofa with 3238 vertices of the sofa with 412 vertices

Although my framework supports normal mapping, the objects I used for this project do not

have normal maps. I expect the effect would improve with proper normal maps as it makes

normal transitions smoother.

20/35

CS562 Final project Report 2020/12/15

Beñat Morisset de Pérdigo DigiPen Institute of Technology, Bilbao

6.1 Style

It requires a lot of manual tweaking of the values to get the desired look, I have done my best to

replicate Frank Miller and Roy Lichstenstein. You can see the results below.

 ​ ​Roy Lichtenstein, “Golf Ball”, 1962 Image taken from my framework

 © Estate of Roy Lichtenstein

 ​ ​Sin City - Marv by Frank Miller Image taken from my framework

21/35

CS562 Final project Report 2020/12/15

Beñat Morisset de Pérdigo DigiPen Institute of Technology, Bilbao

6.2 Performance

This project was not done with performance in mind, so the implementation is probably very

sub-optimal. Nonetheless, I have done some little benchmarks of the effect so you can get a

rough idea of what to expect. I added a shader with less options and one with no options as a

clumsy attempt at optimization.

The shader with less options does not have:

- Choice of primary contour type (uses the sobel of camera z coordinate)

- Choice of neighborhood type (uses square neighborhood)

- Choice of turning on and off individual line types (all are drawn)

- Choice of scaling the allowed proportions and minimum dot difference for suggestive

lines by the distance between the neighbor and the center pixel (no scaling is done)

- Choice of turning on and off the toon-shading (always has it on)

This should be a nice improvement as it removes a lot of branching in the shader. This should

especially be important in the choices of algorithms, as there both branches have potentially

heavy computations.

On the shader with no options only two uniforms remain: the view and the projection matrix.

Both are passed to the GPU every frame so an improvement would be to pass the projection

matrix only when it changes, which is in most applications very rare. Compared with the less

options shader, this only removes tweakable values. So it should have a smaller impact.

All the benchmarks below have been done in a machine with processor Intel® Core™ i7-7700

CPU @ 3.60GHz and graphics card NVIDIA GeForce GTX 1050.

22/35

CS562 Final project Report 2020/12/15

Beñat Morisset de Pérdigo DigiPen Institute of Technology, Bilbao

6.2.1 Square Neighborhood Dimensions

As you can see below, the performance of the effect is highly dependent on the dimensions used

for the neighborhoods. This is expected as there are three double loops that depend on N so the

algorithm is .(N)O 2

As expected, removing a few branching options makes a noticeable difference. Removing the

rest of the tweakable values also seems to have a small impact.

Benchmark done with a 1600x900 renderbuffer resolution with the effect covering it fully.

6.2.2 Renderbuffer Resolution

As all effects based on a fragment shader, the performance cost is directly proportional to the

renderbuffer resolution, as the full effect is done once per pixel.

Again, the less options shader seems to be a noticeable improvement and the no options shader

yields a smaller improvement, but is still noticeable.

Benchmark done with all 9x9 square neighborhoods with the effect covering the renderbuffer fully.

23/35

 square neighborhood dimension

 5x5 9x9 13x13

shader with all options 5.6 ms 18.9 ms 39.5 ms

shader with less options 5.2 ms 17.7 ms 38.1 ms

shader no options - 16.6 ms -

 renderbuffer resolution

 800x450 1200x675 1600x900

shader with all options 3.6 ms 10.2 ms 18.9 ms

shader with less options 3.2 ms 9.3 ms 17.7 ms

shader no options 3.0 ms 9.1 ms 16.6 ms

CS562 Final project Report 2020/12/15

Beñat Morisset de Pérdigo DigiPen Institute of Technology, Bilbao

6.2.3 Screen Coverage

All my shaders discard clear color pixels to avoid problems. This is, as a side effect, an

optimization. Therefore, the full effect is only applied to the pixels belonging to an object, so

the number of pixels that get the full effect is a very important factor.

Benchmark done with all 9x9 square neighborhoods with a 1600x900 resolution.

I forgot to add the no-options shader and now it will be very hard to get the exact same coverage

as the other two. So I leave it like this as the most important information is conveyed here and I

do not want to redo the benchmark entirely again.

24/35

 screen coverage proportion

 full ~1/4 ~1/35

shader with all options 18.9 ms 3.3 ms 0.7 ms

shader with less options 17.7 ms 3.2 ms 0.7 ms

CS562 Final project Report 2020/12/15

Beñat Morisset de Pérdigo DigiPen Institute of Technology, Bilbao

7. Possible Improvements

7.1 Appeal

I have implemented one improvement: Super-sampling Anti-aliasing (SSAA). This smoothes out

the lines increasing the effectiveness of the effect. Unfortunately, this technique is quite

expensive for this effect as, for Mx SSAA it multiplies the cost of the fragment shader by !M 2

This makes the framework run way below the 60F PS mark in my computer which means it is

unusable for most real-time applications without some heavy optimization. You can try it for

yourself following the instructions in section ​9​.

These images have been taken from my framework. They show the same render, the left not having SSAA and the

right one having 2x SSAAx2. As expected the rendering time has been multiplied by 4 (from 10.3 ms on the left one

to 40.2 ms on the right one)

An easy improvement would be to fade the lines when they near their limit values. I have done

this only for the Principal Contour, but the paper states that this is especially important on both

suggestive lines.

The biggest improvement in appeal would come from an improvement of the Principal

Highlight. As we have seen in section ​5.3​, my implementation yields badly defined Principal

Highlight lines.

As stated in section ​6​, using proper normal maps should also improve the results.

25/35

CS562 Final project Report 2020/12/15

Beñat Morisset de Pérdigo DigiPen Institute of Technology, Bilbao

And off course, having more detailed objects will yield better results. So prefer using high-poly

meshes when using this effect.

Changing the approach completely and doing all in object-space as the papers’ authors did

would greatly improve the lines definition, but that would be a whole other project.

7.2 Performance

As it has already been stated, this project was not made with performance in mind. Therefore,

this implementation can probably be optimized in many ways. Anyway, I list below a couple

optimizations I thought about.

As we have seen, removing the unneeded options does optimize noticeably. As stated in the

section ​6.2​ the projection matrix could also be sent only when it changes, which is often never

the case.

If only using face normals, we could work only with the depth buffer, computing the normal

from dFdX and dFdY of the position in camera-space via the tangent and the bitangent. This

would enable the removal of the normal buffer form the g-buffer which should greatly optimize

the geometry pass (which is filling the g-buffer) and also optimize the effect. Keep in mind that

optimizing the geometry pass is only useful when dealing with a huge amount of vertices.

26/35

CS562 Final project Report 2020/12/15

Beñat Morisset de Pérdigo DigiPen Institute of Technology, Bilbao

8. Conclusion
Although not perfect, this project has achieved its goal to render 3D objects using lines in a

similar way an artist might. The downside is this implementation is a bit expensive and needs

optimizing to be usable for a real-time application such as a game.

9. How to Use the Demo
Next to this document there should be a folder called BIN. Open it and execute the file called

cs562_b.morisset_finalproject.exe. Inside the folder there is also a file called README.txt that

contains a brief explanation of the controls, you can read it as well.

Once the demo has loaded (it should not take more than a few seconds) you will see the

following on your window:

Framework window upon opening.

27/35

CS562 Final project Report 2020/12/15

Beñat Morisset de Pérdigo DigiPen Institute of Technology, Bilbao

The top bar contains the following:

- Help​: contains a brief explanation of the controls and shortcuts for the scene. Please

read this as it contains information not listed below.

- Scenes:​ here you can reload the whole scene, just the shaders or change the current

scene. Most of the scenes are for other assignments; final_project_sponza and

final_project (the one you start in) are the two relevant scenes for this project.

- Window: ​here you can change the window resolution as well as open/close the Lines

floating menu.

- G-Buffer:​ here you can change the g_buffer resolution separately from the window’s.

This is useful to get Super-Sampling Anti-Aliasing (SSAA).

- Displaying: ​It states what is currently being displayed. You can change it to see the

normal buffer, the depth buffer, and the positions in camera-space. To see the effect it

should be in lines. This is useful for debugging and understanding how the framework

works.

The top bar also states how much time in milliseconds the framework is spending on

computations in the CPU and in the GPU. As this framework is only used for graphics, the CPU

is not used much. The numbers are displaying a moving average so when checking, leave it

without touching anything for a few seconds for it to stabilize.

28/35

CS562 Final project Report 2020/12/15

Beñat Morisset de Pérdigo DigiPen Institute of Technology, Bilbao

The lines floating window displays all the options and tweakable

values of the Lines for Conveying Shape effect. Remember that if

you have closed it you can reopen it in the Window menu on the

top bar.

The first dropdown menu lets us choose the shader to use. In

section ​6.2​ I have explained what each does, essentially each next

shader has less tweakables and options and should have better

performance. Here I will explain all the options and tweakables of

the “full options” hader, as it is the one containing the most and

none of the others have things this does not.

The five checkboxes let you enable/disable each type of line

separately as well as the toon shading.

The following two sliders let you choose the background and base

greyscale colors.

The following vector value defines the light direction for the toon

shading. Do not worry, the shader normalizes it before use.

The following dropdown menu and integer input are the

neighborhood type and dimension. See section ​4.2​, ​4.3​ and ​4.4​ for This image taken from my

detailed explanations. Both apply to both suggestive lines as well ​framework show all the possible

as the Principal Highlight. The neighborhood radius for circular ​options and tweakables of theR

neighborhood or the square side for square neighborhood isN ​Lines floating menu.

going to be .im R = N = 2 · d + 1

Scaling by dim is a functionality suggested by the paper which scales both tweakable values, the

proportion allowed and the minimum difference of dot product, of both suggestive lines by N

or and by or respectively. This has not been explained above but I found out it is quiteR 1
N

1
R

useless as values should be both values should be tweaked anyways.

29/35

CS562 Final project Report 2020/12/15

Beñat Morisset de Pérdigo DigiPen Institute of Technology, Bilbao

Max Z diff is the difference in the camera-space Z-coordinate we accept for our neighbors as

explained in section ​4.2​. Again, this is used in all linetypes but the Principal Contour.

Finally, each line type has its own set of tweakables and options. They are explained in their

corresponding sections: ​4.1​, ​4.2​, ​4.3​ and ​4.4​.

30/35

CS562 Final project Report 2020/12/15

Beñat Morisset de Pérdigo DigiPen Institute of Technology, Bilbao

10. Bonus Images

Image taken from my framework featuring an interesting wet-like effect of the Serapis head. On the left you can see

the setting used to achieve such an effect.

31/35

CS562 Final project Report 2020/12/15

Beñat Morisset de Pérdigo DigiPen Institute of Technology, Bilbao

This image has been taken from my framework. It features a corner of the sponza using the Frank Miller’s style

preset. Sponza does use proper normal maps.

32/35

CS562 Final project Report 2020/12/15

Beñat Morisset de Pérdigo DigiPen Institute of Technology, Bilbao

This image has been taken from my framework. It features the lion head of the sponza in Frank Miller’s style

preset. Sponza does use proper normal maps.

33/35

CS562 Final project Report 2020/12/15

Beñat Morisset de Pérdigo DigiPen Institute of Technology, Bilbao

Three images taken from my framework. Using only the suggestive contour, an interesting effect happens when

setting the minimum dot product difference to 0 and slowly raising the smaller than minimum allowed proportion.

Try it out! The three images represent that transition going from left to right.

34/35

CS562 Final project Report 2020/12/15

Beñat Morisset de Pérdigo DigiPen Institute of Technology, Bilbao

11. References
● The papers the project is based upon:

- DECARLO, D., FINKELSTEIN, A., RUSINKIEWICZ, S., AND SANTELLA, A.
2003. ​Suggestive contours for conveying shape​. ​ACM Transactions on Graphics
(Proc. SIGGRAPH) 22, 3, 848– 855.

- DECARLO, D., RUSINKIEWICZ, S. 2007. ​Highlight lines for conveying shape​.
NPAR

● The API used in my framework:

- OpenGL
● The libraries used in my framework:

- Glad

- OpenGL Mathematics (GLM)

- stb_image

- Open Asset Import Library (Assimp)

- Json-cpp

- Dear ImGui

35/35

https://dl.acm.org/doi/abs/10.1145/1201775.882354
https://dl.acm.org/doi/abs/10.1145/1201775.882354
https://dl.acm.org/doi/abs/10.1145/1201775.882354
https://dl.acm.org/doi/abs/10.1145/1201775.882354
https://dl.acm.org/doi/abs/10.1145/1201775.882354
https://dl.acm.org/doi/abs/10.1145/1201775.882354
https://dl.acm.org/doi/10.1145/1274871.1274881
https://dl.acm.org/doi/10.1145/1274871.1274881
https://dl.acm.org/doi/10.1145/1274871.1274881
https://dl.acm.org/doi/10.1145/1274871.1274881
https://www.opengl.org/
https://glad.dav1d.de/
https://github.com/g-truc/glm
https://github.com/nothings/stb/blob/master/stb_image.h
https://www.assimp.org/
http://jsoncpp.sourceforge.net/
https://github.com/ocornut/imgui

